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Abstract. Earlier work has shown that no extension of the Eckart-Young SVD approxima-
tion theorem can be made to the strong orthogonal rank tensor decomposition. Here, we present a
counterexample to the extension of the Eckart-Young SVD approximation theorem to the orthog-
onal rank tensor decomposition, answering an open question previously posed by Kolda [SIMAX,
23(1):243–355, July 2001].

Key words. singular value decomposition, principal components analysis, multidimensional
arrays, higher-order tensor, multilinear algebra

AMS subject classifications. 15A69, 49M27, 62H25

1. Introduction. We consider the problem of whether or not we can extend the
Eckart-Young result to tensors for a particular extension of the SVD known as the
orthogonal rank decomposition. In other words, suppose a tensor A has an orthogonal
rank decomposition of the form

A =
r∑

i=1

σiUi.

Here, r is the minimal number of terms that can be used to represent A, the σi’s
are scalars such that σ1 ≥ σ2 ≥ · · · ≥ σr > 0, and the Ui’s are decomposed tensors
(i.e., rank-1 tensors) with the property that any pair of the decomposed tensors are
orthogonal. Notation and definitions are provided in §2. The question is: Does the
sum of the first k terms yield the best rank-k approximation?

In the case that A is a matrix, the orthogonal rank approximation is equivalent to
the SVD approximation where each σi is equal to the ith singular value and each Ui

is the outer product of the ith left singular vector with the ith right singular vector.
For matrices, the Eckart-Young theorem [3] says that the best rank-k approximation
to A is indeed given by the sum of the first k terms of the SVD.

Kolda [4] showed that the Eckart-Young approximation property does not hold
for the strong orthogonal rank tensor decomposition, another extension of the SVD.
Leibovici and Sabatier have attempted to show that the Eckart-Young approximation
property holds for the orthogonal rank tensor decomposition [5, Theorem 2]. The
refutation of that claim in [4] is incorrect,1 so here we reconsider this issue and show
that the Eckart-Young approximation property does not hold for the orthogonal rank
tensor decomposition.

Our argument proceeds as follows. In §3, we present an orthogonal rank decom-
position of a tensor A. From the decomposition, we can determine that the orthogonal
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rank of A is 2. If the Eckart-Young extension hypothesis is true, then the first term
of the decomposition should be the best rank-1 approximation of A. In §4, how-
ever, we compute the best rank-1 approximation of A and find that it is not equal
to the first term of the orthogonal decomposition presented in §3. We know from
Kolda [4] that the orthogonal rank decomposition is not unique, so in §5, we consider
whether or not we can extend the best rank-1 approximation of A to an orthogonal
rank decomposition. We find that the best we can possibly do is produce a 3-term
orthogonal decomposition, which is not a rank decomposition. Thus we conclude in
§6 that the Eckart-Young approximation theorem for the SVD cannot be extended to
the orthogonal rank tensor decomposition.

2. Notation & Definitions. We use the notation and definitions from Kolda [4],
briefly summarized here. If A is an m1×m2×· · ·×mn tensor, we say the order of A is
n, and the jth dimension of A is mj . The set of all tensors of size m1×m2×· · ·×mn

is denoted by T (m1,m2, . . . ,mn).
Decomposed tensors are the building blocks of tensor decompositions. A decom-

posed tensor is a tensor U ∈ T (m1,m2, . . . ,mn) that can be written as

U = u(1) ⊗ u(2) ⊗ · · · ⊗ u(n),

where ⊗ denotes the outer product and each u(j) ∈ Rmj for j = 1, . . . , n. The
vectors u(j) are called the components of U . The set of all decomposed tensors of size
m1 ×m2 × · · · ×mn is denoted by D(m1,m2, . . . ,mn).

Let U, V ∈ D(m1,m2, . . . ,mn). We say that U and V are orthogonal (U⊥V ) if

U · V =
n∏

j=1

u(j) · v(j) = 0.

The orthogonal rank of A, denoted rank⊥(A), is defined to be the minimal r such that
A can be expressed as

A =
r∑

i=1

σiUi,

where Ui⊥Uj for all i 6= j and ‖Ui‖ = 1 for all i. This decomposition is called the
orthogonal rank decomposition. Other decompositions are described by Kolda [4],
including the strong orthogonal rank decomposition mentioned in §1.

3. An Example Tensor with Orthogonal Rank 2. Consider the following
tensor A ∈ T (m,m, m) defined by

A = σ1 a⊗ a⊗ a︸ ︷︷ ︸
U1

+ σ2 b⊗ b⊗ â︸ ︷︷ ︸
U2

. (3.1)

Let the vectors a, â ∈ Rm be orthogonal (i.e., a⊥â) with ‖a‖ = ‖â‖ = 1. Define b =
1√
2

(a + â). Let σ1, σ2 ∈ R with σ1 > σ2 > 0. Observe that U1⊥U2, so rank⊥(A) ≤ 2.
Further, we can see that we cannot reduce this to a single decomposed tensor since
the span in every component has dimension 2. Thus, we can conclude that

rank⊥(A) = 2

and that (3.1) is an orthogonal rank decomposition of A.
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4. The Best Rank-1 Approximation. We directly compute the best rank-1
approximation of A in (3.1), which we denote by

A1 = γ x⊗ y ⊗ z, (4.1)

where γ > 0 and ‖x‖ = ‖y‖ = ‖z‖ = 1. Note that we may assume that γ is positive
since its sign can be absorbed into, e.g., the x-vector without affecting the quality of
the approximation. We proceed to solve for γ, x, y, z.

Consider the first component. Without loss of generality, we assume x ∈ span{a, â}.
Let x̂ be the orthogonal complement of x in the space defined by span{a, â}. Then
we can define αx, βx ∈ R such that

x = αxa + βxâ,

x̂ = βxa− αxâ,

a = αxx + βxx̂, (4.2)
â = βxx− αxx̂, (4.3)

Using these definitions, we can express b as

b =
(αx + βx)√

2
x− (αx − βx)√

2
x̂

We can produce similar decompositions for the second and third components using y
and z, respectively. We can then rewrite A in terms of x and x̂ in the first component,
y and ŷ in the second component, and z and ẑ in the third component; in other
words, we can rewrite A as the sum of eight terms which are the combinations of
{x, x̂} ⊗ {y, ŷ} ⊗ {z, ẑ} as follows:

A = [ σ1 αxαyαz + σ2
2 (αx + βx) (αy + βy) βz ] x⊗ y ⊗ z

+ [ σ1 αxαyβz − σ2
2 (αx + βx) (αy + βy) αz ] x⊗ y ⊗ ẑ

+ [ σ1 αxβyαz − σ2
2 (αx + βx) (αy − βy) βz ] x⊗ ŷ ⊗ z

+ [ σ1 αxβyβz + σ2
2 (αx + βx) (αy − βy) αz ] x⊗ ŷ ⊗ ẑ

+ [ σ1 βxαyαz − σ2
2 (αx − βx) (αy + βy) βz ] x̂⊗ y ⊗ z

+ [ σ1 βxαyβz + σ2
2 (αx − βx) (αy + βy) αz ] x̂⊗ y ⊗ ẑ

+ [ σ1 βxβyαz + σ2
2 (αx − βx) (αy − βy) βz ] x̂⊗ ŷ ⊗ z

+ [ σ1 βxβyβz − σ2
2 (αx − βx) (αy − βy) αz ] x̂⊗ ŷ ⊗ ẑ.

(4.4)

The coefficient of the x⊗ y ⊗ z term is

γ = σ1αxαyαz +
σ2

2
(αx + βx)(αy + βy)βz.

The best rank-1 approximation of the form in (4.1) is produced by maximizing γ [2]:

max σ1αxαyαz +
σ2

2
(αx + βx)(αy + βy)βz (4.5)

s.t. α2
x + β2

x = 1
α2

y + β2
y = 1

α2
z + β2

z = 1

First observe that none of the α’s can be zero because in that case we have

γ =
σ2

2
(αx + βx)(αy + βy)βz ≤

σ2

2
(
√

2)(
√

2)(1) = σ2.
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From the assumption that σ1 > σ2, we can get a larger objective value by simply
choosing αx = αy = αz = 1 to yield γ = σ1.

It also turns out that the β’s are nonzero, but proving this is more difficult.
We must consider the first-order necessary conditions for optimality for (4.5), which
produces the following system of equations:

σ1αyαz +
σ2

2
(αy + βy)βz + 2λxαx = 0 (4.6)

σ1αxαz +
σ2

2
(αx + βx)βz + 2λyαy = 0 (4.7)

σ1αxαy + 2λzαz = 0 (4.8)
σ2

2
(αy + βy)βz + 2λxβx = 0 (4.9)

σ2

2
(αx + βx)βz + 2λyβy = 0 (4.10)

σ2

2
(αx + βx)(αy + βy) + 2λzβz = 0 (4.11)

Case I. We show βz 6= 0 by contradiction. Suppose βz = 0. Note that this
implies αz = ±1 from the equality constraint in (4.5). From (4.9) and (4.10), we get
λxβx = 0 and λyβy = 0. Suppose λx = 0. Then we get that αy = 0 from (4.6), but
we know none of the α’s are zero from the argument above, so this is a contradiction
and λx 6= 0. Likewise, we can show λy 6= 0. So, we must have βx = βy = 0 and
αx = αy = ±1, but then (4.11) yields a contradiction. Thus we conclude that βz 6= 0.

Case II. We show βx 6= 0 by contradiction. Suppose βx = 0. Then from (4.9),
we have (αy + βy)βz = 0. From Case I, we know that βz 6= 0, so we must have
(αy + βy) = 0. Combining this with (4.11) and the fact that βz 6= 0, we get λz = 0.
Then from (4.8), we get αy = 0 since αx = ±1. Once again, since none of the α’s can
be zero, we have a contradiction. Hence, we must have βx 6= 0.

Case III. Using an argument analogous to Case II, we can show that βy 6= 0.

Thus we have that every α and β is nonzero, i.e,

αx 6= 0, αy 6= 0, αz 6= 0, βx 6= 0, βy 6= 0, and βz 6= 0. (4.12)

This implies that each component of A1, the best rank-1 contribution to A, has
contributions from both a and â. Therefore, A1 6= U1; i.e., A1 is not the first term of
the orthogonal rank decomposition given in (3.1). In the next section, we attempt to
extend A1 to an orthogonal rank decomposition.

Before we go on, let us show that we may, without loss of generality, assume that
all the α’s and β’s are positive. The argument is as follows.

At any optima of (4.5), each term of γ must be nonnegative. If the first term
were negative, we could reverse the sign of αz, which is nonzero by (4.12), resulting in
a larger objective value without affecting the other term nor violating the constraint.
Likewise for the second term and βz. Thus,

αxαyαz > 0 and (αx + βx)(αy + βy)βz > 0 (4.13)

Additionally, for any optima of (4.5), we must have

sign(αx) = sign(βx) and sign(αy) = sign(βy). (4.14)



ORTHOGONAL RANK TENSOR DECOMPOSITION COUNTEREXAMPLE 5

In this case, if αx is positive and βx is negative or vice versa, reversing the sign of
whichever one is not the same as their sum, (αx + βx), results in a larger objective
value without affecting the other term nor violating the constraint. Note that here
we assume that if the sum is negative, there is one other negative term in the product
which enforces the positivity required by (4.13).

Finally, for any optima of (4.5), we must also have

sign(αz) = sign(βz) (4.15)

If αx and αy are both negative or both positive, then αz must be positive to ensure
that the first term of γ is positive from (4.13). Furthermore, this implies that (αx+βx)
and (αy + βy) are both negative or both positive by (4.14), so once again βz must be
positive to ensure positivity of the second term of the objective. Likewise, both αz

and βz must be negative if αx and αy have opposite signs.
From (4.14) and (4.15), each (α, β) pair must have the same sign. Now suppose

that an (α, β) pair, say the one associated with x, is negative. Then we may absorb
the minus sign by substituting x = −x and x̂ = −x̂ in (4.2) and (4.3). Therefore we
may assume, without loss of generality, that

αx > 0, αy > 0, αz > 0, βx > 0, βy > 0, and βz > 0. (4.16)

5. Extending the Rank-1 Approximation. Although the best rank-1 ap-
proximation to A is not the first term of the orthogonal decomposition in §3, there is
still the possibility that the best rank-1 approximation may be the first term of some
alternate orthogonal rank decomposition of A since we know that the decomposition
is not unique [4, Lemma 3.5]. Therefore we consider the problem of extending the
best rank-1 approximation to an orthogonal rank decomposition, i.e., an orthogonal
decomposition with only two terms.

Now consider the remainder tensor R1 = A − A1, consisting of last seven terms
from (4.4). In order for us to extend the best rank-1 approximation defined by A1

to an orthogonal decomposition of rank 2, we must be able to rewrite R1 as a single
decomposed tensor for any choice of σ1 and σ2.

From (4.16), we know that all of the α- and β-terms are positive. Observe that
as the ratio σ1/σ2 → +∞, we have αx, αy, αz → 1. In other words, there exists σ1

sufficiently larger than σ2, such that

αx > βx and αy > βy. (5.1)

If we choose σ1 and σ2 such that (5.1) holds, then the coefficients in R1 corre-
sponding to x ⊗ ŷ ⊗ ẑ and x̂ ⊗ y ⊗ ẑ must be positive. These two terms cannot be
reduced to a single rank-1 term because the span in the two first components has
dimension two. Adding any additional nonzero terms from R1 cannot reduce the
number of orthogonal decomposed tensors in the sum.

So, if A1 is the first term, we cannot express A as the sum of fewer than three
decomposed tensors.

6. Conclusion. We conclude that the Eckart-Young approximation theorem
cannot be extended to the orthogonal rank tensor decomposition. In §3, we con-
sidered the orthogonal rank decomposition of A given by

A = σ1U1 + σ2U2.
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If we can extend the Eckart-Young approximation theorem, then σ1U1 should be the
best rank-1 approximation, but we saw in §4 that this is not the case. On the other
hand, the orthogonal rank decomposition is not unique [4], so in §5 we considered the
alternate tack of extending A1, the best rank-1 approximation, to an orthogonal rank
decomposition. In this case, we found that we cannot express A using fewer than
three terms whenever A1 is the first term.

In other words, the best rank-1 decomposition is not nested in the best rank-2
decomposition. Thus we have derived a counterexample to the extension of the Eckart-
Young matrix approximation theorem to the orthogonal rank tensor decomposition.
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